4755 (FP1) Further Concepts for Advanced Mathematics

Section A

\begin{tabular}{|c|c|c|c|}
\hline 1(i)

1(ii) \& \[
$$
\begin{aligned}
& z=\frac{6 \pm \sqrt{36-40}}{2} \\
& \Rightarrow z=3+\mathrm{j} \text { or } z=3-\mathrm{j} \\
& |3+\mathrm{j}|=\sqrt{10}=3.16(3 \text { s.f. }) \\
& \arg (3+\mathrm{j})=\arctan \left(\frac{1}{3}\right)=0.322(3 \text { s.f. }) \\
& \Rightarrow \operatorname{roots} \operatorname{are} \sqrt{10}(\cos 0.322+\mathrm{j} \sin 0.322) \\
& \text { and } \sqrt{10}(\cos 0.322-\mathrm{j} \sin 0.322) \\
& \text { or } \sqrt{ } 10(\cos (-0.322)+\mathrm{j} \sin (-0.322))
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| [2] |
| M1 |
| M1 |
| A1 |
| [3] | \& | Use of quadratic formula/completing the square |
| :--- |
| For both roots |
| Method for modulus |
| Method for argument (both methods must be seen following A0) |
| One mark for both roots in modulusargument form - accept surd and decimal equivalents and (r, θ) form. Allow $\pm 18.4^{\circ}$ for θ. |

\hline 2 \& \[
$$
\begin{aligned}
& 2 x^{2}-13 x+25=A(x-3)^{2}-B(x-2)+C \\
& \Rightarrow 2 x^{2}-13 x+25 \\
& =A x^{2}-(6 A+B) x+(2 B+C)+9 A \\
& \mathrm{~A}=2 \\
& \mathrm{~B}=1 \\
& \mathrm{C}=5
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| A1 |
| [4] | \& | For $\mathrm{A}=2$ |
| :--- |
| Attempt to compare coefficients of x^{1} or x^{0}, or other valid method. |
| For B and C, cao. |

\hline | 3(i) |
| :---: |
| |
| 3(ii) | \& \[

$$
\begin{aligned}
& \left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) \\
& \left(\begin{array}{cc}
2 & -1 \\
0 & 3
\end{array}\right)\left(\begin{array}{llll}
0 & 2 & 3 & 1 \\
0 & 0 & 2 & 2
\end{array}\right)=\left(\begin{array}{llll}
0 & 4 & 4 & 0 \\
0 & 0 & 6 & 6
\end{array}\right) \\
& \Rightarrow \mathrm{A}^{\prime \prime}=\left(\begin{array}{ll}
4, & 0
\end{array}\right), \mathrm{B}^{\prime \prime}=(4, \quad 6), \mathrm{C}^{\prime \prime}=\left(\begin{array}{ll}
0, & 6
\end{array}\right)
\end{aligned}
$$

\] \& | B1 |
| :--- |
| [1] |
| M1 |
| A1 |
| [2] | \& | Applying matrix to column vectors, with a result. |
| :--- |
| All correct |

\hline 3(iii) \& | Stretch factor 4 in x-direction. |
| :--- |
| Stretch factor 6 in y-direction | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$
\]

[2] \& Both factor and direction for each mark. SC1 for "enlargement", not stretch.

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 4 \& \(\arg (z-(2-2 \mathrm{j}))=\frac{\pi}{4}\) \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
[3]
\end{tabular} \& \begin{tabular}{l}
Equation involving arg(complex variable). \\
Argument \((\) complex expression \()=\)
\[
\frac{\pi}{4}
\] \\
All correct
\end{tabular} \\
\hline 5 \& \begin{tabular}{l}
Sum of roots \(=\alpha+(-3 \alpha)+\alpha+3=3-\alpha=5\)
\[
\Rightarrow \alpha=-2
\] \\
Product of roots
\[
=-2 \times 6 \times 1=-12
\] \\
Product of roots in pairs
\[
\begin{aligned}
\& =-2 \times 6+(-2) \times 1+6 \times 1=-8 \\
\& \Rightarrow p=-8 \text { and } q=12
\end{aligned}
\] \\
Alternative solution
\[
\begin{aligned}
\& (x-\alpha)(x+3 \alpha)(x-\alpha-3) \\
\& =x^{3}+(\alpha-3) x^{2}+\left(-5 \alpha^{2}-6 \alpha\right) \mathrm{x}+3 \alpha^{3}+9 \alpha^{2} \\
\& \Rightarrow \quad \alpha=-2, \\
\& \quad p=-8 \text { and } q=12
\end{aligned}
\]
\end{tabular} \& M1
A1
M1
M1

A1
A1
[6]
M1
M1A1
M1
A1A1

[6] \& | Use of sum of roots |
| :--- |
| Attempt to use product of roots Attempt to use sum of products of roots in pairs |
| One mark for each, ft if α incorrect |
| Attempt to multiply factors |
| Matching coefficient of x^{2},cao. |
| Matching other coefficients |
| One mark for each, ft incorrect α. |

\hline 6 \& \[
$$
\begin{aligned}
& \sum_{r=1}^{n}\left[r\left(r^{2}-3\right)\right]=\sum_{r=1}^{n} r^{3}-3 \sum_{r=1}^{n} r \\
& =\frac{1}{4} n^{2}(n+1)^{2}-\frac{3}{2} n(n+1) \\
& =\frac{1}{4} n(n+1)(n(n+1)-6) \\
& =\frac{1}{4} n(n+1)\left(n^{2}+n-6\right)=\frac{1}{4} n(n+1)(n+3)(n-2)
\end{aligned}
$$

\] \& M1 M1 A2 M1 A1 [6] \& | Separate into separate sums. (may be implied) |
| :--- |
| Substitution of standard result in terms of n. |
| For two correct terms (indivisible) |
| Attempt to factorise with $n(n+1)$. |
| Correctly factorised to give fully factorised form |

\hline
\end{tabular}

Sectio			
8(i)	$(\sqrt{3}, 0),(-\sqrt{3}, 0)\left(0, \frac{3}{8}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Intercepts with x axis (both) Intercept with y axis SC1 if seen on graph or if $x= \pm \sqrt{ } 3$, $y=3 / 8$ seen without $y=0, x=0$
8(ii)	$x=4, x=-2, y=1$	B3 [3]	Minus 1 for each error. Accept equations written on the graph.
8(iii)			
		B1 B1B1 B1	Correct approaches to vertical asymptotes, LH and RH branches LH and RH branches approaching horizontal asymptote
		B1 [4]	On LH branch $0<y<1$ as $x \rightarrow-\infty$.
8(iv)	$-2<x \leq-\sqrt{3}$ and $4>x \geq \sqrt{3}$	B1 B2 [3]	LH interval and RH interval correct (Award this mark even if errors in inclusive/exclusive inequality signs) All inequality signs correct, minus 1 each error

9(i)	$\alpha+\beta=3$	B1	
	$\alpha \alpha^{*}=(1+\mathrm{j})(1-\mathrm{j})=2$	M1	Attempt to multiply $(1+\mathrm{j})(1-\mathrm{j})$
	$\alpha+\beta \quad 3 \quad 3(1-\mathrm{j}) \quad 3 \quad 3$	A1	
	$\frac{\alpha+\beta}{\alpha}=\frac{3}{1+\mathrm{j}}=\frac{3(1-\mathrm{j})}{(1+\mathrm{j})(1-\mathrm{j})}=\frac{3}{2}-\frac{3}{2} \mathrm{j}$	M1	Multiply top and bottom by $1-\mathrm{j}$
	$\begin{array}{llllll}\alpha & 1+\mathrm{j} & (1+\mathrm{j})(1-\mathrm{j}) & 2 & 2\end{array}$	A1 [5]	
9(ii)			
	$(z-(1+\mathrm{j}))(z-(1-\mathrm{j}))$	M1	Or alternative valid methods
	$=z^{2}-2 z+2$	A1 [2]	(Condone no " $=0$ " here)
9(iii)	$1-\mathrm{j}$ and $2+\mathrm{j}$	B1	For both
	Either $\begin{aligned} & (z-(2-\mathrm{j}))(z-(2+\mathrm{j})) \\ & =z^{2}-4 z+5 \end{aligned}$	M1	For attempt to obtain an equation using the product of linear factors involving complex conjugates
	$\begin{aligned} & \left(z^{2}-2 z+2\right)\left(z^{2}-4 z+5\right) \\ & =z^{4}-6 z^{3}+15 z^{2}-18 z+10 \end{aligned}$	M1	Using the correct four factors
	So equation is $z^{4}-6 z^{3}+15 z^{2}-18 z+10=0$	A2	All correct, -1 each error (including omission of " $=0$ ") to min of 0
	Or alternative solution Use of $\sum \alpha=6, \sum \alpha \beta=15$, $\sum \alpha \beta \gamma=18$ and $\alpha \beta \gamma \delta=10$	M1	Use of relationships between roots and coefficients.
	to obtain the above equation.	A3 [5]	All correct, -1 each error, to min of 0

Section B Total: 36
Total: 72

