4755 (FP1) Further Concepts for Advanced Mathematics

Section A

1(i)	$z = \frac{6 \pm \sqrt{36 - 40}}{2}$ $\Rightarrow z = 3 + j \text{ or } z = 3 - j$	M1 A1 [2]	Use of quadratic formula/completing the square For both roots
1(ii)	$ 3+j = \sqrt{10} = 3.16 \text{ (3s.f.)}$	M1	Method for modulus
	$arg(3+j) = arctan(\frac{1}{3}) = 0.322 (3s.f.)$	M1	Method for argument (both methods must be seen
	⇒ roots are $\sqrt{10}$ (cos 0.322 + jsin 0.322) and $\sqrt{10}$ (cos 0.322 - jsin 0.322) or $\sqrt{10}$ (cos(-0.322)+jsin(-0.322))	A1 [3]	following A0) One mark for both roots in modulus- argument form – accept surd and decimal equivalents and (r, θ) form. Allow $\pm 18.4^{\circ}$ for θ .
2	$2x^{2} - 13x + 25 = A(x - 3)^{2} - B(x - 2) + C$ $\Rightarrow 2x^{2} - 13x + 25$ $= Ax^{2} - (6A + B)x + (2B + C) + 9A$ $A = 2$ $B = 1$	B1 M1 A1	For A=2 Attempt to compare coefficients of x^1 or x^0 , or other valid method. For B and C, cao.
	C = 5	[4]	
3(i)	$\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$	B1	
		[1]	
3(ii)	$ \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 4 & 4 & 0 \\ 0 & 0 & 6 & 6 \end{pmatrix} $	M1	Applying matrix to column vectors, with a result.
	\Rightarrow A"=(4, 0), B"=(4, 6), C"=(0, 6)	A1 [2]	All correct
3(iii)	Stretch factor 4 in <i>x</i> -direction. Stretch factor 6 in <i>y</i> -direction	B1 B1 [2]	Both factor and direction for each mark. SC1 for "enlargement", not stretch.

4	$\arg(z-(2-2j)) = \frac{\pi}{4}$	B1 B1 B1 [3]	Equation involving arg(complex variable). Argument (complex expression) = $\frac{\pi}{4}$ All correct
5	Sum of roots = $\alpha + (-3\alpha) + \alpha + 3 = 3 - \alpha = 5$ $\Rightarrow \alpha = -2$	M1 A1	Use of sum of roots
	Product of roots $= -2 \times 6 \times 1 = -12$ Product of roots in pairs	M1 M1	Attempt to use product of roots Attempt to use sum of products of roots in pairs
	$= -2 \times 6 + (-2) \times 1 + 6 \times 1 = -8$ $\Rightarrow p = -8 \text{ and } q = 12$ Alternative solution	A1 A1 [6]	One mark for each, ft if α incorrect
	Attendative solution $(x-\alpha)(x+3\alpha)(x-\alpha-3)$ $=x^3+(\alpha-3)x^2+(-5\alpha^2-6\alpha)x+3\alpha^3+9\alpha^2$	M1	Attempt to multiply factors
	a = -2, a = -2, a = -2, a = -2,	M1A1 M1 A1A1 [6]	Matching coefficient of x^2 , cao. Matching other coefficients One mark for each, ft incorrect α .
6	$\sum_{r=1}^{n} \left[r(r^2 - 3) \right] = \sum_{r=1}^{n} r^3 - 3 \sum_{r=1}^{n} r$	M1	Separate into separate sums. (may be implied)
	$= \frac{1}{4}n^{2}(n+1)^{2} - \frac{3}{2}n(n+1)$	M1	Substitution of standard result in terms of <i>n</i> .
	$= \frac{1}{4} n(n+1)(n(n+1)-6)$	A2 M1	For two correct terms (indivisible)
	$= \frac{1}{4}n(n+1)(n^2+n-6) = \frac{1}{4}n(n+1)(n+3)(n-2)$	A1	Attempt to factorise with $n(n+1)$. Correctly factorised to give fully
		[6]	factorised form

7	When $n = 1$, $6(3^n - 1) = 12$, so true for $n = 1$	B1	
	Assume true for $n = k$	E1	Assume true for <i>k</i>
	$12 + 36 + 108 + \dots + (4 \times 3^k) = 6(3^k - 1)$		
	$\Rightarrow 12 + 36 + 108 + \dots + (4 \times 3^{k+1})$	M1	Add correct next term to both sides
	$= 6(3^{k} - 1) + (4 \times 3^{k+1})$		Attament to footoning with a factor (
	$= 6 \left[\left(3^k - 1 \right) + \frac{2}{3} \times 3^{k+1} \right]$	M1	Attempt to factorise with a factor 6
	$= 6\left[3^k - 1 + 2 \times 3^k\right]$	A1	c.a.o. with correct simplification
	$= 6(3^{k+1} - 1)$ But this is the given result with $k + 1$ replacing		
	k. Therefore if it is true for $n = k$, it is true for $n = k + 1$.	E1	Dependent on A1 and first E1
		E1	Dependent on B1 and second E1
	Since it is true for $n = 1$, it is true for $n = 1, 2$, 3 and so true for all positive integers.	[7]	
	1	ı	Section A Total: 36

Section	В		
8(i)	$(\sqrt{3}, 0), (-\sqrt{3}, 0) (0, \frac{3}{8})$	B1 B1	Intercepts with x axis (both) Intercept with y axis SC1 if seen on graph or if $x = \pm \sqrt{3}$, $y = 3/8$ seen without $y = 0$, $x = 0$ specified.
8(ii)	$x = 4, \ x = -2, \ y = 1$	B3 [3]	Minus 1 for each error. Accept equations written on the graph.
8(iii)		B1 B1B1 B1 [4]	Correct approaches to vertical asymptotes, LH and RH branches LH and RH branches approaching horizontal asymptote On LH branch $0 < y < 1$ as $x \rightarrow -\infty$.
8(iv)	$-2 < x \le -\sqrt{3} \text{ and } 4 > x \ge \sqrt{3}$	B1 B2 [3]	LH interval and RH interval correct (Award this mark even if errors in inclusive/exclusive inequality signs) All inequality signs correct, minus 1 each error

Mark Scheme

January 2009

9(i)	$\alpha + \beta = 3$ $\alpha \alpha^* = (1+j)(1-j) = 2$ $\frac{\alpha + \beta}{\alpha} = \frac{3}{1+j} = \frac{3(1-j)}{(1+j)(1-j)} = \frac{3}{2} - \frac{3}{2}j$	B1 M1 A1 M1 A1 [5]	Attempt to multiply $(1+j)(1-j)$ Multiply top and bottom by $1-j$
9(ii)	(z-(1+j))(z-(1-j)) = z^2-2z+2	M1 A1 [2]	Or alternative valid methods (Condone no "=0" here)
9(iii)	1-j and $2+j$	B1	For both
	Either $(z-(2-j))(z-(2+j))$ = z^2-4z+5	M1	For attempt to obtain an equation using the product of linear factors involving complex conjugates
	$(z^2-2z+2)(z^2-4z+5)$	M1	Using the correct four factors
	$= z^4 - 6z^3 + 15z^2 - 18z + 10$		
	So equation is $z^4 - 6z^3 + 15z^2 - 18z + 10 = 0$	A2 [5]	All correct, -1 each error (including omission of "=0") to min of 0
	Or alternative solution Use of $\Sigma \alpha = 6$, $\Sigma \alpha \beta = 15$, $\Sigma \alpha \beta \gamma = 18$ and $\alpha \beta \gamma \delta = 10$	M1	Use of relationships between roots and coefficients.
	to obtain the above equation.	A3 [5]	All correct, -1 each error, to min of 0

Mark Scheme

January 2009

10(i)	$\alpha = 3 \times -5 + 4 \times 11 + -1 \times 29 = 0$ $\beta = -2 \times -7 + 7 \times (5 + k) + -3 \times 7 = 28 + 7k$	B1 M1	Attempt at row 3 x column 3
	$p = -2 \times -7 + 7 \times (3 + k) + -3 \times 7 = 28 + 7k$	A1	Trucings at 10 W 5 W column 5
10(ii)		[3]	
	$\mathbf{AB} = \begin{pmatrix} 42 & 0 & 0 \\ 0 & 42 & 0 \\ 0 & 0 & 42 \end{pmatrix}$	B2	Minus 1 each error to min of 0
	$\begin{pmatrix} 0 & 0 & 42 \end{pmatrix}$	[2]	
10(iii)	(11 -5 -7)	M1	Use of B
	$\mathbf{A}^{-1} = \frac{1}{42} \begin{pmatrix} 11 & -5 & -7 \\ 1 & 11 & 7 \\ -5 & 29 & 7 \end{pmatrix}$	B1	$\frac{1}{42}$
	(-3 29 7)	A1	Correct inverse, allow decimals to 3
10(%)		[3]	sf
10(iv)	$\frac{1}{42} \begin{pmatrix} 11 & -5 & -7 \\ 1 & 11 & 7 \\ -5 & 29 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ -9 \\ 26 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$	M1	Attempt to pre-multiply by \mathbf{A}^{-1}
	$= \frac{1}{42} \begin{pmatrix} -126 \\ 84 \\ -84 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ -2 \end{pmatrix}$		SC B2 for Gaussian elimination with 3 correct solutions, -1 each error to min of 0
	x = -3, $y = 2$, $z = -2$	A3	
		[4]	Minus 1 each error
			Section B Total: 36
Total: 72			